Robust within Groups Anova: Dealing with Missing Values

نویسندگان

  • Jinxia Ma
  • Rand R. Wilcox
چکیده

The paper considers the problem of testing the hypothesis that J ≥ 2 dependent groups have equal population measures of location when using a robust estimator and there are missing values. For J = 2, methods have been studied based on trimmed means. But the methods are not readily extended to the case J > 2. Here, two alternative test statistics were considered, one of which performed poorly in some situations. The one method that performed well in simulations is based on a very simple test statistic with the null distribution approximated via a basic bootstrap technique. The method uses all of the available data to estimate each of the marginal (population) trimmed means. Other robust measures of location were considered, for which imputation methods have been derived, but in simulations the actual Type I error probability was estimated to be substantially less than the nominal level, even when there are no missing values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust inter and intra-cell layouts design model dealing with stochastic dynamic problems

In this paper, a novel quadratic assignment-based mathematical model is developed for concurrent design of robust inter and intra-cell layouts in dynamic stochastic environments of manufacturing systems. In the proposed model, in addition to considering time value of money, the product demands are presumed to be dependent normally distributed random variables with known expectation, variance, a...

متن کامل

Frequency Ratio: a method for dealing with missing values within nearest neighbour search

In this paper we introduce the Frequency Ratio (FR) method for dealing with missing values within nearest neighbour search. We test the FR method on known medical datasets from the UCI machine learning repository. We compare the accuracy of the FR method with five commonly used methods (three “imputation” and two “bypassing” methods) for dealing with values that are “missing completely at rando...

متن کامل

Preferred Robust Response Surface Design with Missing Observations Based on Integrated TOPSIS-AHP Method

- Missing observations occur in experimental designs as a result of insufficient sampling, machine breakdown, high cost, and errors in the measurements. In nanomanufacturing, missing observations often appear in designs because the combination of factors or molecular structures selected by a designer cannot be experimented successfully. In the current paper, Box-Behnken and face-centered compos...

متن کامل

تحلیل درستنمایی ماکزیمم مدل رگرسیون لجستیک در حالتی که داده های متغیرهای پیشگو کامل نیستند ولی متغیرهای کمکی وجود دارند

Background and Objectives: Missing data exist in many studies, e.g. in regression models, and they decrease the model's efficacy. Many methods have been suggested for handling incomplete data: they have generally focused on missing outcome values. But covariate values can also be missing.Materials and Methods: In this paper we study the missing imputation by the EM algorithm and auxiliary varia...

متن کامل

Anova for Longitudinal Data with Missing Values

We carry out an ANOVA analysis to compare multiple treatment effects for longitudinal studies with missing values. The treatment effects are modeled semiparametrically via a partially linear regression which is flexible in quantifying the time effects of treatments. The empirical likelihood is employed to formulate nonparametric ANOVA tests for treatment effects with respect to covariates and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013